Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
Environ Geochem Health ; 46(4): 134, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483664

RESUMO

Familiarity with the chemical characteristics of regional groundwater can provide important guidance and reference for the development of regional groundwater exploitation. Jianghan Plain has been reported to have high groundwater total hardness (TH), resulting in the inability of local groundwater to be directly used as drinking water. In order to explore the causes of high TH, the paper analyzed the hydrochemical characteristics of shallow groundwater in Jianghan Plain combined with software of SPSS, JMP, and PHEEQC. The results showed that the cations in the groundwater in the area were mainly Ca2+, while the anions were mainly HCO3-. 20% of groundwater exceed the China national guideline for TH (i.e., 450 mg/L). The groundwater chemistry in the study area was controlled by three main factors of dissolution of carbonate rocks, human activities, and redox conditions, among which the interaction between water and rock had the greatest impact. The water carbonate rock interaction within Jianghan Plain was affected by various factors such as water flow and aquifers and showed a gradually weakening trend from west to east. This work not only strengthened the understanding of the causes of the high TH of groundwater in the region, but also provided reference value for regional groundwater environmental management.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Dureza , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Qualidade da Água , Água Potável/análise , China , Carbonatos/análise
2.
Environ Monit Assess ; 196(4): 398, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530475

RESUMO

The current study was conducted within the context of the Holocene era in Sebkha El-Guettiate, located in southeastern Tunisia. The aim was to determine the factors influencing the geochemical and mineralogical composition of sediments and to elucidate the sedimentary characteristics of the Holocene within the Sebkha core. We examined a sediment core extending 100 cm from this Sebkha, subjecting it to comprehensive analysis to uncover its sedimentological, mineralogical, and geochemical properties. Several techniques were employed to strengthen and validate the connections between geochemical and mineralogical analyses, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and infrared (IR) spectroscopy, among others. Furthermore, statistical analyses utilizing principal component analysis (PCA) were applied to the results of the geochemical and mineralogical studies, aiding in the identification of patterns and relationships. A comprehensive mineralogical assessment of the core's sediments revealed the presence and interpretation of carbonate minerals, evaporite minerals, and detrital minerals. Through the application of infrared (IR) spectrometer techniques to all sediment samples, we gained insight into the mineralogical components and the distribution of key elements such as quartz, kaolinite, calcite, feldspar, and organic carbon. The geochemical composition demonstrated a clear dominance of silica (SiO2), accompanied by fluctuations in carbonate percentages (CaCO3). The prominent major elements, primarily magnesium (Mg) and calcium (Ca) originating from dolomitization, sodium (Na) and chlorine (Cl) from halite, and calcium (Ca) from gypsum, exhibited varying levels. Results from Rock-Eval 6 pyrolysis indicated that the organic matter within the sediments is generally a mixture of terrestrial and aquatic origins. This study provides practical information that underscores the diverse origins contributing to Sebkha sediment formation, often influenced by saline systems.


Assuntos
Cálcio , Dióxido de Silício , Cálcio/análise , Dióxido de Silício/análise , Tunísia , Monitoramento Ambiental , Minerais/análise , Carbonato de Cálcio/análise , Carbonatos/análise
3.
Astrobiology ; 24(2): 138-150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393829

RESUMO

Most of the chemical and physical interactions of interest to the astrobiology community are influenced by the mineralogy of the systems under consideration. Often, this mineralogy occurs in sediment or sediment-like aqueous microenvironments in which the early minerals differ dramatically from the mature version that results from a long diagenesis, which are tied to complex interactions of pH, redox state, concentration, and temperature. This interconnectedness is difficult to reproduce in a laboratory setting yet is essential to understanding how the physical and chemical demands of living systems alter and are altered by their geological context. We present a facile means for producing precipitated mineral analogues within a microchannel and demonstrate its analytical efficacy through instrumental and modeling techniques. We show that amorphous, early-stage analogues of iron sulfide, iron carbonate, and iron phosphate can be formed at the boundary between flowing solutions, modeled on the microscale, and analyzed by standard instrumental techniques such as scanning electron microscopy/energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.


Assuntos
Compostos Ferrosos , Minerais , Fosfatos , Minerais/química , Carbonatos/análise , Ferro/química
4.
Environ Sci Pollut Res Int ; 31(10): 15716-15732, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305969

RESUMO

Tongling is a significant non-ferrous metal mining city in China, which produces waste that negatively impacts the area's water environment. It is essential to comprehend the hydrochemical properties and formation processes of groundwater to safeguard and utilize it efficiently. We explored major ions, strontium, and its isotopes in water and river-bottom samples from the northern (i.e., A-A' section) and southern (i.e., B-B' section) areas. The hydrochemical facies show the mining activities have a greater impact on surface water than on groundwater. Groundwater hydrochemical formation results from several factors, with water-rock interaction and ion exchange being primary. Additionally, the dissolution of calcite, dolomite, and feldspar, oxidation of pyrite, and hydrolysis of carbonate minerals also impact the formation of groundwater chemistry. Our analysis of strontium and its isotopes indicates that carbonate dissolution primarily occurred in the recharge area; the runoff from the recharge to the discharge area results in the dissolution of certain silicate rocks; calcite dissolution sources account for > 70% contribution in both surface water and groundwater water-rock interactions, whereas silicate rock dissolution sources and dolomite dissolution sources account for < 30%. Due to changed order of dissolved carbonate and silicate minerals during groundwater flow, the distribution of strontium and its isotopes in the A-A' section is opposite to that in the B-B' section. The findings provide a basis for developing, utilizing, managing, and protecting groundwater resources, especially in similar mining areas.


Assuntos
Água Subterrânea , Magnésio , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Carbonato de Cálcio/análise , Água Subterrânea/química , Mineração , Isótopos de Estrôncio/análise , Minerais/análise , Estrôncio/análise , Carbonatos/análise , Isótopos/análise , Silicatos/análise , Água/análise
5.
Mar Pollut Bull ; 198: 115843, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039577

RESUMO

Accurately constraining the natural variability of the carbonate system is essential for evaluating long-term changes in coastal areas, which result from the absorption of anthropogenic CO2. This is particularly important given the significant variation in physical and biological processes in these regions. In this regard, the analysis of surface carbonate chemistry in the Yellow Sea was conducted using discrete seawater samples obtained from the Socheongcho Ocean Research Station (37.423°N, 124.738°E) between 2017 and 2022. Our bottle data and sensor pH measurements revealed considerable seasonal variations of aragonite saturation state (ΩAR), typically ranging from 1.6 to 3.9. These variations are particularly pronounced during the summer and early winter. Our dataset serves as a baseline for understanding the long-term changes in ocean acidification in the Yellow Sea, the complex biogeochemical processes in coastal areas, and their impact on ocean acidification.


Assuntos
Carbonato de Cálcio , Água do Mar , Carbonato de Cálcio/análise , Concentração de Íons de Hidrogênio , Dióxido de Carbono/análise , Carbonatos/análise , Oceanos e Mares
6.
Ground Water ; 62(2): 196-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37401104

RESUMO

Structural landform evolution and hydrogeochemical analyses are crucial for understanding the characteristics of karst groundwater systems and the development of deep karst formed by complex aquifers in a tectonic collision zone. Detailed structural landform evolution analysis was carried out along the large-scale anticlinorium to investigate the temporal evolution of karst aquifer systems and karstification. Results showed that the tectonic activity included weak horizontal compression and slow vertical uplift during the Triassic to Middle Jurassic, forming a denuded clastic platform. This period was mainly preserved in the geological record as burial karst. From the Late Jurassic to the Early Cretaceous, the study area was strongly compressed by S-N-trending stress, and developed E-W-trending high-angle imbricate thrust structures, which controlled the formation of folded and fault-blocked mountains. Vertical multilayered strata underwent a strong horizontal extrusion, forming a large-scale anticlinorium with secondary folds and faults. With the exposure of carbonate rocks due to rapid crustal uplift, karst began to develop, forming a vertical multilayer karst aquifer system and controlling the distribution of karst groundwater. The Fangxian faulted basin was formed from the Late Cretaceous to the Paleogene, whereby landforms were dominated by intermountain basins. Slow crustal uplift caused the retreat of the denudation line to the east, leading to an increase in hydrodynamic conditions and karstification, and the initiation of early karst groundwater systems. Since the Neogene, intermittent and rapid crustal uplift has led to the deepening of rivers, resulting in the formation of peak clusters and canyons, the development of deep karst, and the complete formation of karst groundwater systems. Combined with hydrogeochemical and borehole data, local, intermediate, and regional karst groundwater systems were identified. It has vital significance to the geological route selection or construction of deep-buried tunnels and the utilization of karst groundwater.


Assuntos
Água Subterrânea , Água Subterrânea/química , Carbonatos/análise , Hidrodinâmica , Rios , Monitoramento Ambiental/métodos
7.
Arch Oral Biol ; 158: 105868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070323

RESUMO

OBJECTIVES: To investigate the chemical and mechanical properties of intraradicular dentin submitted to radiotherapy. MATERIALS AND METHODS: Sixteen mandibular incisors were divided into two groups (n = 8): non-irradiated and irradiated. The irradiated teeth were obtained from head and neck radiotherapy patients, with a total dose ranging from 70.2 to 72 Gy divided into 1.8 Gy daily. After sample preparation, intraradicular dentin slices of each root third were evaluated by Raman spectroscopy, energy dispersive spectroscopy and Knoop microhardness test. Data were analyzed by Two-way ANOVA and Tukey's test (α = 0.05). RESULTS: In Raman spectroscopy, carbonate and amide III showed a significant difference for irradiation and third (carbonate p = 0.021 and p < 0.001; amide III p < 0.001 and p = 0.001, respectively). For amide I, there was a significant difference for third (p < 0.001). For carbonate/mineral ratio, there was a significant difference for irradiation (p = 0.0016) and third (p < 0.001), with the irradiated middle third showing the lowest values. For amide I/amide III ratio, there was a significant difference for irradiation (p = 0.005) in the cervical third. In energy dispersive spectroscopy, carbon (p = 0.004; p = 0.020), phosphorus (p < 0.001; p = 0.009) and calcium (p = 0.008; p = 0.007) showed differences for irradiation and third, with the irradiated groups presenting lower values in cervical and middle thirds. For calcium/phosphorus ratio, there was a significant difference for irradiation (p < 0.001) in cervical and middle thirds. Regarding microhardness, there was a significant difference for irradiation (p < 0.001), with all irradiated groups showing lower microhardness values. CONCLUSIONS: The radiotherapy altered the chemical and mechanical properties of intraradicular dentin, mainly in the cervical and middle root thirds.


Assuntos
Cálcio , Dentina , Humanos , Dentina/química , Cálcio/análise , Incisivo , Carbonatos/análise , Fósforo/análise , Amidas/análise , Teste de Materiais
8.
J Hazard Mater ; 465: 133174, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38086299

RESUMO

Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.


Assuntos
Oryza , Poluentes do Solo , Solo , Cádmio/metabolismo , Poluentes do Solo/análise , Carbonatos/análise , Cátions , Óxidos/análise , Oryza/metabolismo , Carbonato de Cálcio/metabolismo
9.
Sci Rep ; 13(1): 20389, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990070

RESUMO

The present study aimed to investigate the possible use of a non-instrumentation technique including blue light irradiation for root canal cleaning. Extracted human single rooted teeth were selected. Nine different groups included distilled water, NaOCl, intra-canal heated NaOCl, and NaOCl + EDTA irrigation after either instrumentation or non-instrumentation, and a laser application group following non-instrumentation technique. The chemical assessment of the root canal dentine was evaluated using energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. Surface microstructural analyses were performed by using scanning electron microscopy (SEM). The antimicrobial efficacy of different preparation techniques was evaluated using microbial tests. Light application didn't change the calcium/phosphorus, carbonate/phosphate and amide I/phosphate ratios of the root canal dentin. The root canal dentin preserved its original chemistry and microstructure after light application. The instrumentation decreased the carbonate/phosphate and amide I/phosphate ratios of the root canal dentin regardless of the irrigation solution or technique (p < 0.05). The application of light could not provide antibacterial efficacy to match the NaOCl irrigation. The NaOCl irrigation both in the non-instrumentation and instrumentation groups significantly reduced the number of bacteria (p < 0.05). The use of minimally invasive root canal preparation techniques where the root canal is not instrumented and is disinfected by light followed by obturation with a hydraulic cement sealer reduced the microbial load and preserved the dentin thus may be an attractive treatment option for management of vital teeth needing root canal therapy.


Assuntos
Dentina , Tratamento do Canal Radicular , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Dentina/química , Tratamento do Canal Radicular/métodos , Fosfatos/análise , Carbonatos/análise , Amidas/análise , Irrigantes do Canal Radicular , Ácido Edético , Hipoclorito de Sódio , Microscopia Eletrônica de Varredura
10.
Environ Sci Pollut Res Int ; 30(55): 117688-117705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37867172

RESUMO

The treatment and beneficial use of polluted or contaminated environmental matrices have become major issues, especially as the world strives toward a zero-waste policy. In this regard, dredged sediments need to be treated before they can be used in an environmentally safe and sustainable manner. Therefore, this work aims to treat estuarine sediments and, more importantly, use physicochemical, mineral, organic, and chemical information to understand the reactions that occur upon treatment. Dredged estuarine sediments were collected from Tancarville (Seine River estuary, France) and subjected to electrokinetic (EK) remediation using a 128-L laboratory-scale reactor. The sediments were treated 8 h per day for 21 days. The electric (voltage and current) and physicochemical (pH and electric conductivity) parameters were monitored during treatment. Sediments were collected from various sections in the reactor at the end of the experiment (lengthwise, widthwise, and depthwise). The spatial variation was investigated in terms of organic, mineral, and metal contents. Statistical analyses proved that the variation occurred only in the lengthwise direction. Furthermore, three main phases described the treatment, which were mainly linked to carbonate dissolution and pH variation. The results also showed that the trace elements Ni and Zn were reduced by 21% and 19%, respectively, without a direct link to pH, while Ca and Mg were only redistributed. The buffering capacity of the anodic sediment was reduced due to carbonate dissolution. The treated sediments showed reduced contents in trace metals without affecting major elements that can be useful in agriculture (i.e., Ca and Mg).


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Metais/análise , Minerais , Agricultura , Carbonatos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Metais Pesados/análise
11.
Environ Geochem Health ; 45(10): 7065-7080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572235

RESUMO

East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main water‒rock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.


Assuntos
Minas de Carvão , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Carbonatos/análise , Água Subterrânea/química , China , Solo , Carvão Mineral/análise , Poluentes Químicos da Água/análise
12.
Environ Sci Pollut Res Int ; 30(42): 95348-95366, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544950

RESUMO

During weathering and pedogenesis of carbonate rock with poor-uranium (U) and thorium (Th), U and Th present the characteristics of strong leaching (especially U) and significant residual enrichment, the cause of which is still unclear. In this paper, a weathering profile developed by dolomite in karst area of Guizhou province in southwest China was selected, which showed zonation characteristics of bedrock (Y), powdery rock (Yf), and soil layer (T1 to T12) from the bottom to up. Through the determination of the occurrence speciation of U and Th in Y and weathering profile, combined with mineralogical, geochemical characteristics, and element mass balance calculation, the constraints of U and Th speciation on the geochemical behavior of U and Th during the weathering of carbonate rock were revealed. The results proved that U and Th in Y preferentially existed in acid insoluble phase, for example, the contents of U and Th in Y were 0.90 mg·kg-1 and 0.28 mg·kg-1, respectively, while those in acid insoluble matter were 2.34 mg·kg-1 and 2.57 mg·kg-1, respectively, but because the mass percentage of acid insoluble matter was extremely low (0.95%), the mass percentages of U and Th in the acid soluble phase in the whole rock were absolutely superior (96% of U and 86% Th). The U and Th in the acid soluble phase of Y were mainly adsorbed on the crystal surface of carbonate minerals or existed in the cement, and the U and Th in the carbonate lattice only accounted for a small proportion. From Y to Yf with the initial dissolution, U and Th released from the surface of carbonate minerals and cements were in carbonate-rich alkaline environment, and these portions of U and Th were leached out, resulting in strong loss of U and Th in the Yf (the loss rates are 83% of U and 65% of Th, respectively). From the Yf to the overlying soil layer T1, the carbonate components were completely dissolved, and the U and Th released from the carbonate lattice showed different behaviors, where U was completely leached and Th tended to stay in the weathered residue. Thus, in the soil layer T1 formed by Y or Yf , the residual U was the inheritance of the U in the acid insoluble phase of Y; For Th, it not only inherited the Th of acid insoluble phase of Y, but also superimposed the Th from carbonate lattice in Y. On the other hand, during the evolution process from Y to Yf and to soil layer T1, with the dissolution of carbonate, the acid insoluble phase also showed a significant tendency of chemical weathering. However, the U and Th in the Y acid insoluble phase were not leached with the decomposition of the acid insoluble phase but were redistributed among the residual phases. For the geochemical behaviors of U and Th in the evolution of soil profile (T1~T12), they were subjected to the occurrence speciation of U and Th in T1 and the change of U and Th occurrence speciation with the upward direction of soil profile. The U and Th released from the carrier minerals were mainly redistributed among the residual solid phases, which weakened the intensity of their further loss. This study deepens the understanding of the geochemical behavior of radionuclides in karst environment and provides reference for the treatment of radioactive pollution in karst areas.


Assuntos
Tório , Urânio , Tório/análise , Urânio/análise , Solo , Minerais , Carbonatos/análise
13.
PeerJ ; 11: e15594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426411

RESUMO

Background: Continental weathering plays an important role in regulating atmospheric CO2 levels. Chemical weathering in glacial areas has become an intensely focused topic in the background of global change compared with other terrestrial weathering systems. However, research on the weathering of the glacial areas in the Yarlung Tsangpo River Basin (YTRB) is still limited. Methods: In this article, the major ions of the Chaiqu and Niangqu catchments in the YTRB have been investigated to illustrate the chemical weathering rates and mechanisms of the glacier areas in the YTRB. Results: Ca2+ and HCO3- dominate the major ions of the Chaiqu and Niangqu rivers, accounting for about 71.3% and 69.2% of the TZ+ of the Chaiqu (the total cations, TZ+ = Na+ + K+ + Ca2 + + Mg2+, in µeq/L), and about 64.2% and 62.6% of the TZ+ of the Niangqu. A Monte Carlo model with six end-members is applied to quantitatively partition the dissolved load sources of the catchments. The results show that the dissolved loads of the Chaiqu and Niangqu rivers are mainly derived from carbonate weathering (accounting for about 62.9% and 79.7% of the TZ+, respectively), followed by silicate weathering (about 25.8% and 7.9% of the TZ+, respectively). The contributions of precipitation and evaporite to the Chaiqu rivers are about 5.0% and 6.2%, and those to the Niangqu rivers are about 6.3% and 6.2%. The model also calculated the proportion of sulfuric acid weathering in the Chaiqu and Niangqu catchments, which account for about 21.1% and 32.3% of the TZ+, respectively. Based on the results calculated by the model, the carbonate and silicate weathering rates in the Chaiqu catchment are about 7.9 and 1.8 ton km-2 a-1, and in the Niangqu catchment, the rates are about 13.7 and 1.5 ton km-2 a-1. The associated CO2 consumption in the Chaiqu catchment is about 4.3 and 4.4 × 104 mol km-2 a-1, and about 4.3 and 1.3 × 104 mol km-2 a-1 in the Niangqu catchment. The chemical weathering rates of the glacier areas in the YTRB show an increasing trend from upstream to downstream. Studying the weathering rates of glacier catchments in the Tibetan Plateau (TP) reveals that the chemical weathering rates of the temperate glacier catchments are higher than those of the cold glacier catchments and that lithology and runoff are important factors in controlling the chemical weathering of glacier catchments in the TP. The chemical weathering mechanisms of glacier areas in the YTRB were explored through statistical methods, and we found that elevation-dependent climate is the primary control. Lithology and glacial landforms rank second and third, respectively. Our results suggest that, above a certain altitude, climate change caused by tectonic uplift may inhibit chemical weathering. There is a more complex interaction between tectonic uplift, climate, and chemical weathering.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Tibet , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Silicatos/análise , Cátions , Carbonatos/análise
14.
Sci Total Environ ; 892: 164713, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302593

RESUMO

Long-term series data can provide a glimpse of the influence of natural and anthropogenic factors on water chemistry. However, few studies have been conducted to analyze the driving forces of the chemistry of large rivers based on long-term data. This study aimed to analyze the variations and driving mechanisms of riverine chemistry from 1999 to 2019. We compiled published data on major ions in the Yangtze River, one of the three largest rivers in the world. The results showed that Na+ and Cl- concentrations decreased with increasing discharge. Significant differences in riverine chemistry were found between the upper and middle-lower reaches. Major ion concentrations in the upper reaches were mainly controlled by evaporites, especially Na+ and Cl- ions. In contrast, major ion concentrations in the middle-lower reaches were mainly affected by silicate and carbonate weathering. Furthermore, human activities were the drivers of some major ions, notably SO42- ions associated with coal emissions. The increased major ions and total dissolved solids in the Yangtze River in the last 20 years were ascribed to the continuous acidification of the river and the construction of the Three Gorges Dam. Attention should be given to the impact of anthropogenic activities on the water quality of the Yangtze River.


Assuntos
Monitoramento Ambiental , Rios , Humanos , Monitoramento Ambiental/métodos , Qualidade da Água , Carbonatos/análise , Tempo (Meteorologia) , China
15.
Environ Monit Assess ; 195(6): 653, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162599

RESUMO

This study characterises the quality of groundwater for the Ludhiana district of Punjab, India by analysing water samples collected from 152 locations spread across 3767 km2. The samples were analysed for 18 parameters consisting of pH, EC, TDS, TA, TH, major anions and cations. The parameter values have been used to calculate the drinking water quality index of the study area which suggests that 2.6, 57.9, 32.9, 4 and 2.6% of the samples fall under the excellent, good, poor, very poor and unsuitable categories, respectively. The sequence of abundance for ions (in meq/l) as revealed from the laboratory tests is Na+ (37.1%) > Ca2+ (30.8%) > Mg2+ (29.1%) > K+ (2.8%) for cations and HCO3- (80%) > Cl¯ (8.9%) > CO32- (6.5%) > SO42- (3.9%) > NO3-, F-, PO43- (< 1%) for anions. The spatial variability of these parameters has been depicted through the use of interpolation maps. Evaluation of different ionic ratios indicates that carbonate weathering and silicate weathering are both significantly affecting the groundwater chemistry with a slight dominance of carbonate weathering. Also, the ion exchange process is taking place in the area as confirmed by CAI index values. In terms of saturation index, the groundwater is undersaturated with respect to halite, fluorite and sylvite, whereas it is supersaturated for calcite, dolomite and aragonite minerals. The principal components in PCA explained 75.4% of the total variance with 29.1 and 28.3% contributions from PC1 and PC2. Both of these components indicate towards the geogenic and anthropogenic influence on groundwater mineralization of the area. The analysis suggests that groundwater for the study area is suitable for drinking in most of the region expect in a few places. Such a study could be used to understand the current status of groundwater quality in the area, the results of which can be used to prevent further contamination and sustain the resource for the future.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Qualidade da Água , Água Subterrânea/análise , Ânions/análise , Carbonatos/análise , Cátions/análise , Índia
16.
Geobiology ; 21(5): 592-611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37194680

RESUMO

The Devonian-Carboniferous (D-C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D-C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15 N excursion (~-3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13 Ccarb and δ13 Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13 C-depleted anoxic water masses. Decreased δ34 S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13 Corg values associated with maximal △13 C. The integrated δ15 N-δ13 C-δ34 S data suggest that significant ocean-redox variation was recorded in South China during the D-C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.


Assuntos
Carbono , Sedimentos Geológicos , Humanos , Facies , Carbonatos/análise , Água , Hipóxia , China
17.
Nature ; 618(7967): 974-980, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258677

RESUMO

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Assuntos
Oceanos e Mares , Fósforo , Água do Mar , Atmosfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , História Antiga , Hipóxia/metabolismo , Oxigênio/análise , Oxigênio/história , Oxigênio/metabolismo , Fósforo/análise , Fósforo/história , Fósforo/metabolismo , Água do Mar/química , Sulfatos/metabolismo , Carbonatos/análise , Carbonatos/metabolismo , Oxirredução
18.
Microbiol Spectr ; 11(3): e0036323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039655

RESUMO

Carbonate precipitation induced by cyanobacteria is an important factor in lacustrine fine-grained carbonate rock genesis. As key components of these rocks, clay minerals play an important role in aggregating cyanobacteria. However, the formation mechanism of fine-grained carbonate under the effect of clay minerals is unclear. In this study, we investigated carbonate precipitation by Synechococcus cells under the influence of clay minerals. The results showed that clay minerals can accelerate Synechococcus aggregation, and the aggregation rate of the kaolinite group was significantly higher than that of montmorillonite. The aggregate size and Synechococcus cell content increased with an increase in clay minerals, resulting in increasing organic matter and carboxyl content in the aggregates. Due to the high affinity between carboxyl and Ca2+, the presence of Synechococcus sp. could improve the Mg/Ca molar ratio in the microenvironment of aggregates, which is conducive to aragonite precipitation. Thus, aragonite 5 to 10 µm in size precipitated when Synechococcus and clay minerals coexisted, whereas low-magnesium calcite (15 to 60 µm) was the main carbonate only in the presence of Synechococcus. This study provides important insights into the mechanisms of microbial-induced carbonate precipitation under the effect of clay minerals, which might offer theoretical support for the genesis of fine-grained lacustrine carbonate. IMPORTANCE The biogenesis of lacustrine fine-grained carbonates is of great significance to the exploitation of shale oil. Clay minerals are an important component of lacustrine fine-grained sedimentary rocks, which is conductive to the aggregation and settlement of cyanobacteria. We investigated the precipitation of carbonate induced by Synechococcus sp. with the addition of kaolinite and montmorillonite. The pH and calcium carbonate saturation of the environment increased under the effect of cyanobacteria photosynthesis. The aggregation of cyanobacteria cells increased the Mg/Ca molar ratio of the microenvironment, creating a favorable condition for the precipitation of aragonite, which was similar in size to the micritic calcite of fine-grained sedimentary rocks. This study provides theoretical support for the genesis of fine-grained carbonates.


Assuntos
Synechococcus , Argila , Bentonita , Caulim , Minerais , Carbonatos/análise , Carbonatos/química , Carbonato de Cálcio/química
19.
Environ Res ; 229: 115981, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100365

RESUMO

Alpine rivers originating from the Tibetan Plateau (TP) contain large amounts of water resources with high environmental sensitivity and eco-fragility. To clarify the variability and controlling factors of hydrochemistry on the headwater of the Yarlung Tsangpo River (YTR), the large river basin with the highest altitude in the world, water samples from the Chaiqu watershed were collected in 2018, and major ions, δ2H and δ18O of river water were analyzed. The values of δ2H (mean: -141.4‰) and δ18O (mean: -18.6‰) were lower than those in most Tibetan rivers, which followed the relationship: δ2H = 4.79*δ18O-52.2. Most river deuterium excess (d-excess) values were lower than 10‰ and positively correlated with altitude controlled by regional evaporation. The SO42- in the upstream, the HCO3- in the downstream, and the Ca2+ and Mg2+ were the controlling ions (accounting for >50% of the total anions/cations) in the Chaiqu watershed. Stoichiometry and principal component analysis (PCA) results revealed that sulfuric acid stimulated the weathering of carbonates and silicates to produce riverine solutes. This study promotes understanding water source dynamics to inform water quality and environmental management in alpine regions.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Tibet , Monitoramento Ambiental/métodos , Rios , Qualidade da Água , Carbonatos/análise , Poluentes Químicos da Água/análise
20.
Astrobiology ; 23(4): 359-371, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37017440

RESUMO

The environmental conditions that prevail on the surface of Mars (i.e., high levels of radiation and oxidants) are not favorable for the long-term preservation of organic compounds on which all strategies for finding life on Mars have been based to date. Since life commonly produces minerals that are considered more resilient, the search for biominerals could constitute a promising alternative approach. Carbonates are major biominerals on Earth, and although they have not been detected in large amounts at the martian surface, recent observations show that they could constitute a significant part of the inorganic component in the martian soil. Previous studies have shown that calcite and aragonite produced by eukaryotes thermally decompose at temperatures 15°C lower than those of their abiotic counterparts. By using carbonate concretions formed by microorganisms, we find that natural and experimental carbonates produced by prokaryotes decompose at 28°C below their abiotic counterparts. The study of this sample set serves as a proof of concept for the differential thermal analysis approach to distinguish abiotic from bio-related carbonates. This difference in carbonate decomposition temperature can be used as a first physical evidence of life on Mars to be searched by in situ space exploration missions with the resolution and the technical constraints of the available onboard instruments.


Assuntos
Meio Ambiente Extraterreno , Marte , Carbonatos/análise , Carbonato de Cálcio , Minerais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...